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Depression is the most frequent psychiatric comorbidity in pa-
tients with epilepsy. By the same token, patients with depression
are at higher risk of developing epilepsy than are controls. Such
bidirectional relations raise the question of whether both disorders
share common pathogenic mechanisms, presenting with common
neurotransmitter abnormalities and involvement of the same neu-
roanatomic structures. In this article, some of the available data in
support of this hypothesis are reviewed.

Around 400 B.C., Hippocrates wrote, “Melancholics ordinar-
ily become epileptics, and epileptics, melancholics: what de-
termines the preference is the direction the malady takes; if it
bears upon the body, epilepsy, if upon the intelligence, melan-
choly” (1). Hippocrates’ supposition that “epileptics become
melancholics” reflects current thinking of a unidirectional re-
lation between depression and epilepsy, because depression is
the most frequent psychiatric comorbidity in epilepsy (2–6). In
contrast, Hippocrates’ suggestion that patients with depression
are at increased risk of developing epilepsy comes as a surprise
to most clinicians, investigators, and patients alike. However,
the premise is supported by two studies published in the last
decade.

In a population-based, case control study carried out in
patients with newly diagnosed epilepsy, Fosgren and Nystrom
(7) found that a history of depression (preceding the onset
of epilepsy) was seven times more frequent among patients
than among age- and sex-matched controls. Similarly, in a
population-based, case–control study of the incidence of new-
onset epilepsy among adults aged 55 and older, Hesdorffer
et al. (8) found that patients were 3.7 more likely to have a
history of depression preceding their initial seizure than were
controls. In this study, the authors also controlled for medical
therapies of depression. Whereas data of these two studies sug-
gest a bidirectional relation between depression and epilepsy,
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they cannot be interpreted as an indication of a causal rela-
tion. However, the high comorbidity prevalence rates of these
two disorders suggest that depression and epilepsy may share
pathogenic mechanisms. The purpose of this review is to ex-
amine some of the available data on their common pathogenic
mechanisms.

Neurotransmitter Abnormalities in Epilepsy
and Depression

It is reasonable to assume that neurotransmitter abnormalities
in epilepsy and depression account for the antiepileptic and
psychotropic properties of several antiepileptic drugs (AEDs),
such as carbamazepine (CBZ), oxcarbazepine, valproic acid
(VPA), and lamotrigine (LTG). Ample evidence exists that
serotonin (i.e., 5-hydroxytryptamine [5-HT]), norepinephrine
(NE), dopamine, γ -aminobutyric acid, and glutamate are op-
erant in the pathogenesis of both disorders (9–14). This review
focuses on common abnormalities of serotonergic and nora-
drenergic transmission—both of which are pivotal pathogenic
mechanisms of mood disorders and the bases for development
of antidepressant pharmacologic treatment (9). Likewise, de-
creased serotonergic and noradrenergic activity facilitates the
kindling process of seizure foci, exacerbates seizure severity,
and intensifies seizure predisposition in some animal models
of epilepsy (10).

Are Abnormal Serotonergic and Noradrenergic
Transmission Common Pathogenic Mechanisms to
Epilepsy and Depression?

Experimental Data

In animal models of epilepsy, compelling experimental data on
the pathogenic role played by 5-HT and NE in seizure pre-
disposition are illustrated in studies of two strains of genetic
epilepsy-prone rats (GEPR), GEPR-3 and GEPR-9, which are
characterized by predisposition to sound-induced generalized
tonic–clonic seizures (15–17) and, particularly in GEPR-9s, a
marked acceleration of kindling (10). Both strains of rats have
innate serotonergic and noradrenergic pre- and postsynaptic
transmission deficits. Noradrenergic deficiencies in GEPRs ap-
pear to result from deficient arborization of neurons arising from
the locus coeruleus (18,19), coupled with excessive presynaptic
suppression of NE release in the terminal fields and lack of post-
synaptic compensatory upregulation (10,20). GEPR-9 rats have
a more pronounced NE transmission deficit and, in turn, exhibit
more severe seizures than do GEPR-3 rats (21). Evidence also
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exists of deficits in serotonergic arborization in the GEPR brain
as well as deficient postsynaptic serotonin1A-receptor density
in the hippocampus (22). Of note, patients with major depres-
sive disorder (MDD) display endocrine abnormalities similar to
those identified in GEPRs, including increased corticosterone
serum levels, deficient secretion of growth hormone, and hy-
pothyroidism (23).

Increments of either NE or 5-HT transmission can pre-
vent seizure occurrence, whereas reduction will have the oppo-
site effect (10,24). For example, drugs that interfere with the
release or synthesis of NE or 5-HT exacerbate seizures in the
GEPRs, including NE storage vesicle inactivators; reserpine or
tetrabenazine; the NE false transmitter, α-methyl-m-tryosine;
the NE synthesis inhibitor, α-methyl-p-tyrosine; and the 5-HT
synthesis inhibitor, p-chlorophenylalanine. Conversely, drugs
that enhance serotonergic transmission, such as the selective
serotonin reuptake inhibitor (SSRI) sertraline, resulted in a
dose-dependent seizure frequency reduction in the GEPR that
correlates to the extracellular thalamic serotonergic concentra-
tion (25). The 5-HT precursor 5-hydroxy-L-tryptophan (5-
HTP) has anticonvulsant effects in GEPRs when combined
with the SSRI, fluoxetine (26). SSRIs and monoamine oxidase
inhibitors (MAOIs) can exert anticonvulsant effects in experi-
mental animals, such as mice and baboons, which are geneti-
cally prone to epilepsy (24,27), as well as nongenetically prone
cats (28), rabbits (29), and rhesus monkeys (30). In addition,
an antiepileptic effect of 5-HT1A receptors has been correlated
to a membrane-hyperpolarizing response, which is associated
with increased potassium conductance in hippocampal-kindled
seizures in cats and in intrahippocampal kainic-acid–induced
seizures in freely moving rats (31,32).

As mentioned, AEDs with established psychotropic effects
(CBZ, VPA, and LTG) can cause an increase in 5-HT (33–
38). In GEPRs, the anticonvulsant protection of CBZ can be
blocked with 5-HT–depleting drugs (34). In addition, the anti-
convulsant effect of the vagal nerve stimulator (VNS) in the rat
may be mediated by activation of the locus coeruleus (39). Dele-
tion of noradrenergic and serotonergic neurons in the rat pre-
vents or significantly reduces the anticonvulsant effect of VNS
against electroshock or pentylenetetrazol-induced seizures (40).
Furthermore, the effect of VNS on the locus coeruleus may be
responsible for its antidepressant effects identified in humans.

Clinical Data

Deficits in 5-HT transmission in human depression may, in
part, be related to a paucity of serotonergic innervation in ter-
minal areas, which is suggested by a scarcity of 5-HT levels in
brain tissue, plasma, and platelets, as well as by a deficit in sero-
tonin transporter–binding sites in postmortem human brain
(41–55). A deficit in the density or affinity of postsynaptic 5-
HT1A receptors has been identified in the hippocampus and

amygdala of untreated depressed patients who committed sui-
cide (56). Furthermore, in suicide victims with MDD, impaired
serotonergic transmission is associated with defects in the dorsal
raphe nuclei that result from suppression of 5-HT1A autorecep-
tors caused by excessively dense serotonergic somatodendritic
impulses (57).

In a positron emission tomography (PET) study, using
the 5-HT1A receptor antagonist [18F]trans-4-fluoro-N -2-[4-(2-
methoxyphenyl)piperazin-1-yl]ethyl-N -(2-pyridyl) cyclohex-
anecarboxamide ([18F]FCWAY), reduced 5-HT1A binding was
found in mesial temporal structures ipsilateral to the seizure
focus in patients with temporal lobe epilepsy (TLE), with and
without hippocampal atrophy (58). In addition, a 20% binding
reduction was found in the raphe and a 34% lower binding in
the thalamic region ipsilateral to the seizure focus (these differ-
ences yielded a statistical trend). In a separate PET study aimed
at quantifying 5-HT1A–receptor binding in 14 patients with
TLE, a binding reduction was identified in the raphe nuclei; in
the epileptogenic hippocampus, amygdala, anterior cingulate,
and lateral temporal neocortex ipsilateral to the seizure focus;
and in the contralateral hippocampi, but to a lesser degree (59).

In contrast to animal studies, research on the impact of
pharmacologic augmentation or reduction in 5-HT and NE
transmission on seizures in humans has been rather sparse and
based mostly on uncontrolled data. For example, depletion of
monoamines from use of reserpine is associated with an increase
in frequency and severity of seizures in patients with epilepsy
(60,61), whereas the use of reserpine at doses of 2–10 mg/day
was found to reduce the electroshock seizure threshold and the
severity of the resulting seizures in patients with schizophrenia
(62–64). The tricyclic antidepressant imipramine, with reup-
take inhibitory effects of NE and 5-HT, was reported to sup-
press absence and myoclonic seizures in the only double-blind,
placebo-controlled studies carried out so far (65–67). Open tri-
als with the tricyclic antidepressant, doxepin, and the SSRIs,
fluoxetine and citalopram, yielded an improvement in seizure
frequency, but no controlled studies with SSRIs have been per-
formed (68–71).

Are Common Neuroanatomic Structures Involved in
Depression and Epilepsy?

A review of the literature reveals structural and functional ab-
normalities of the same neuroanatomic regions in primary de-
pression and in epileptic seizure disorders that are frequently
associated with comorbid depression (72,73). In epilepsy, rel-
evant areas include mesial and orbitofrontal regions as well
as mesial temporal and subcortical structures, such as tha-
lamic nuclei. In primary MDD, Sheline (73) described the
existence of morphologic and volumetric changes in various
neuroanatomic structures that form a “limbic–cortical–striatal–
pallidal–thalamic tract.” The tract consists of two branches: (1)
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a limbic–thalamic–cortical branch that includes the amygdala,
hippocampus, and medial-dorsal nucleus of the thalamus as
well as the mesial and ventrolateral prefrontal cortex; and (2) a
branch running in parallel and linking the caudate, putamen,
and globus pallidus with limbic and cortical regions. It is not
surprising to find prevalence rates of depression ranging from
19% to 65% among patients with epilepsy of mesial tempo-
ral or frontal lobe origin (72). Evidence of common structural
involvement will next be reviewed in greater detail.

Temporal Lobe Abnormalities

Hippocampal atrophy is among the most frequently identi-
fied abnormality in patients with epilepsy and primary depres-
sion. Furthermore, neuroimaging studies performed in patients
with epilepsy and comorbid depression have identified a corre-
lation between the severity of depression and severity of mesial
temporal structural abnormalities, as identified in studies us-
ing magnetic resonance imaging (MRI), single-photon emission
computed tomography (SPECT) scans with the tracer [99mTc]-
hexamethylene propylene amine (99mTc-HMPAO), and proton
magnetic resonance spectroscopy (1H-MRS) (74–76).

In two separate studies of patients with a history of primary
MDD in remission, Sheline et al. (77,78) reported bilateral,
smaller hippocampal volumes than those of age, sex, and height-
matched normal controls. They also identified large hippocam-
pal low-signal foci (≥4.5 mm in diameter), and their number
correlated with the total number of days depressed. A significant
inverse correlation between the duration of depression and left
hippocampal volume also was demonstrated. More recently, in
a study of 38 female patients with a history of MDD, Sheline
and colleagues (79) established that hippocampal atrophy was
prevented with antidepressant drug therapy. They found a sig-
nificant correlation between reduction in hippocampal volume
and the duration of untreated depression, whereas no correla-
tion was found between hippocampal volume loss and length
of depression for patients taking antidepressant medication.

Both the neuropathologic findings and the magnitude of
hippocampal volume reductions differ significantly between
the two disorders, with reductions in TLE being significantly
greater than those in MDD. In mesial temporal sclerosis, neu-
ropathologic findings consist of neuronal cell loss and astrocy-
tosis in hippocampal formation, amygdala, entorhinal cortex,
and occasionally in parahippocampal gyrus. In hippocampus,
neuronal cell loss is prominent in areas CA1 and CA4, the den-
tate gyrus, and the subiculum (82). Unfortunately, few neu-
ropathologic studies of the human hippocampal formation in
patients with primary MDD are available. However, Lucassen
et al. (83) compared 15 hippocampi of patients with a history
of MDD with 16 matched controls and nine steroid-treated pa-
tients (high steroids are associated with hippocampal atrophy).
In 11 of 15 depressed patients, three steroid-treated patients,

and one control, rare but convincing apoptosis was identified
in entorhinal cortex, subiculum, dentate gyrus, CA1 and CA4.

Hippocampal atrophy in primary MDD has been at-
tributed to two potential pathogenic mechanisms: (a) an alter-
ation in brain-derived neurotrophic factors (BDNF), resulting
from the mood disorder; and (b) high glucocorticoid expo-
sure. It has been suggested that a decrease in BDNF levels in
the dentate gyrus and pyramidal cell layer of hippocampus,
amygdala, and neocortex is mediated by glucocorticoids and
can be reversed with antidepressant therapy (84,85). Antide-
pressant drugs increased hippocampal BDNF levels in humans
(86). High glucocorticoid exposure stems from excessive acti-
vation of the hypothalamic–pituitary–adrenal axis, with almost
half of all individuals with depression having impaired dexam-
ethasone suppression of adrenocorticotropic hormone (ACTH)
and cortisol. These changes are also reversible to treatment with
antidepressants (87). In animal studies with rats and monkeys,
deleterious effects of prolonged glucocorticoid exposure were as-
sociated with damage to hippocampal neurons; impeded gran-
ule cell development in the adult hippocampal dentate gyrus;
transient and reversible atrophy of the CA3 dendritic tree; and
finally, results in cell death in extreme and prolonged conditions
(88–91). In a neuropathologic study of amygdala and entorhi-
nal cortex of seven patients with MDD, 10 with bipolar disorder
(BPD), and 12 controls the specimens of MDD patients and
those of patients with BPD had a significant reduction of glial
cells and of the glial/neurons ratio in left amygdala and to a
lesser degree in left entorhinal cortex (81).

Therefore are the neuropathologic changes of TLE magni-
fied in the presence of a chronic, untreated depressive disorder?
Whereas no answer to this question is available, some data sug-
gest a negative impact of a psychiatric history on seizure out-
come after pharmacologic (92) and surgical treatment (93,94).
In a study of 90 patients who underwent an anterotemporal
lobectomy for the management of a refractory TLE, a lifetime
history of depression (identified at the time of the presurgi-
cal evaluation) was a predictor of a worse seizure outcome (94).
Thus could these data suggest that depression may be a biologic
marker for more severe epilepsy?

Frontal Lobe Abnormalities

Functional disturbances of frontal lobe structures have been
recognized in TLE, particularly among patients with comorbid
depression, and correlate to bilateral reduction in inferofrontal
metabolism (95–98). Additionally, neuropsychological testing
with the Wisconsin Card Sorting Test, which is highly sensitive
to frontal-lobe–mediated executive dysfunction, has revealed
poor performance in patients with TLE and comorbid depres-
sion (99).

Involvement of frontal lobes in primary depression has
been demonstrated with functional neuroimaging (e.g., PET,
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SPECT) and neuropsychological studies (100,101). Executive
abnormalities consistently are found in studies on depressive
disorders, with stronger results apparent with more severe
pathology. These neuropsychological disturbances correlated to
reduced blood flow in mesial prefrontal cortex (102,103). Fur-
thermore, in tests demanding executive function, cingulate cor-
tex and striatum could not be activated in patients with MDD
(104).

Likewise, structural changes have been identified in the
cingulate gyrus and white matter of the orbitofrontal and
prefrontal cortex, including smaller orbitofrontal cortex vol-
umes in young adults (105,106) and in geriatric patients with
MDD (107,108). Of note, the magnitude of prefrontal vol-
ume changes was related to the severity of the depression, as
elderly patients with minor depression had lesser changes than
did those with MDD (109).

Neuropathologic studies have documented structural cor-
tical changes in frontal lobes of depressed patients. Rajkowska
et al. (110) found decreases in cortical thickness, neuronal sizes,
and neuronal densities in layers II, III, and IV of the rostral or-
bitofrontal region in the brains of depressed patients. In the
caudal orbitofrontal cortex, significant reductions in glial den-
sities in cortical layers V and VI associated with decreases in
neuronal sizes were identified. Finally, in all cortical layers of
the dorsolateral prefrontal cortex, the authors demonstrated a
decrease in density and size of neuronal and glial cells.

Conclusions

Clearly, these data appear to suggest the involvement of com-
mon neuroanatomic structures and neurotransmitters in de-
pression and epilepsy, which may explain the bidirectional re-
lation between the two disorders and their frequent comorbid
occurrence. This review only begins to examine the very com-
plex interplay between neurobiologic aspects of mood disorders
and epilepsy. Importantly, the review illustrates that depression
in epilepsy is much more than a “psychosocial” complication!
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